微分積分学B 定期試験

2024年1月30日第3時限施行 担当水野将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

BB	旧石	1
IP	戚	1.

次の問いに答えなさい.

- (1) 閉区間 [a,b] 上連続な関数に対する定積分の 線形性を述べなさい.
- (4) 閉区間 [a,b] 上連続な関数に対する定積分の 三角不等式を述べなさい.

- (2) 閉区間 [a,b] 上連続な関数に対する定積分の加法性を述べなさい.
- (5) 閉区間 [a,b] 上連続な関数に対する積分の平均値の定理を述べなさい.

- (3) 閉区間 [a,b] 上連続な関数に対する定積分の順序保存性を述べなさい.
- (6) 関数 $f:(a,b) \to \mathbb{R}$ に対して, $F:(a,b) \to \mathbb{R}$ が f の原始関数であることの定義を述べなさい.

(7) [a,b] 上連続な関数 $f:[a,b] \to \mathbb{R}$ に対して,S が f の不定積分であることの定義を述べなさい.

(10)
$$\frac{x^2}{(x-1)(x-2)}$$
 の原始関数を一つ求めなさい.

- (8) $[0,\infty)$ 上連続な関数 $f:[0,\infty)\to\mathbb{R}$ に対し、広義積分 $\int_0^\infty f(x)\,dx$ が収束することの定義を述べなさい.
- (11) $\int_0^3 \sqrt{9-x^2} \, dx \, \varepsilon$ 求めなさい.

- (9) $[0,\infty)$ 上連続な関数 $f:[0,\infty)\to\mathbb{R}$ に対し、広義積分 $\int_0^\infty f(x)\,dx$ が絶対収束することの定義を述べなさい.
- (12) $\int_{-\pi}^{\pi} \cos^3\left(\frac{x}{2}\right) dx を求めなさい.$

(13) $\int_0^1 \arctan x \, dx$ を求めなさい.

この下は計算用紙として利用してよい.

(14) 自然数 m に対して $\int_{-\pi}^{\pi} \sin(2x) \sin(mx) dx$ を求めなさい.

(15) $\alpha > 0$ に対して, $\int_1^\infty \frac{1}{x^{3\alpha}} dx$ が収束するため o α に対する必要十分条件を求めなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.

問題 2.

 $f:[-1,2] \to \mathbb{R}$ は [-1,2] 上連続とする.このとき,f の [-1,2] 上の定積分 $\int_{-1}^2 f(x)\,dx$ の定義を述べなさい.ただし,「分割」,「分割の長さ」,「Riemann 和」の定義を含めること.

問題 3.

[0,1] 上連続な関数 $f:[0,1] \to \mathbb{R}$ は $x \in [0,1]$ に対して $f(x) \ge 0$ であるとする.このとき,x 軸,y 軸,x = 1,グラフ y = f(x) で囲まれた領域を y 軸のまわりに回転させた回転体の体積が $2\pi \int_0^1 x f(x) \, dx$ で表されることを,区分求積法を用いて説明しなさい.

問題 4.

 $\alpha > 0$ に対して、 $\int_0^1 \frac{1}{x^{\alpha}} dx$ を考える.

- (1) $\int_0^1 \frac{1}{x^{\alpha}} dx$ の定義を述べなさい. (2) 定義にもとづいて, $\int_0^1 \frac{1}{x^{\alpha}} dx$ が収束する $\alpha > 0$ の必要十分条件を求め,積分の値を求めなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.