微分積分学 A 追試験 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず.

問題 1.

次の問いに答えなさい. 答えのみでよい. 答えがどれかわかるように書くこと.

- (1) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to A$ $(x \to a)$ の定義を述べなさい.
- (4) $f: \mathbb{R} \to \mathbb{R}$ に対し、 $f(x) \to -\infty$ $(x \to \infty)$ の定義を述べなさい.

- (2) 開区間 $I \subset \mathbb{R}$, $a \in I$, $f: I \setminus \{a\} \to \mathbb{R}$ に対し, $f(x) \to -\infty$ $(x \to a)$ の定義を述べなさい.
- (5) $I \subset \mathbb{R}$ 上の関数 $f: I \to \mathbb{R}$ が $x = a \in I$ で連続 であることの定義を ε - δ 論法で述べなさい.

- (3) 関数 $f:(a,b)\to\mathbb{R}$ に対し、 $f(x)\to A$ $(x\to a+0)$ の定義を述べなさい.
- (6) $f:[a,b] \to \mathbb{R}$ に対して、Weierstrass の最大値定理の主張を述べなさい.

- (7) $f:[a,b] \to \mathbb{R}$ に対して、中間値の定理の主張を述べなさい.
- (10) $\arcsin(\sin(-\pi))$ を求めなさい.

- (8) $f:[a,b] \to \mathbb{R}$ が [a,b] 上一様連続であることの定義を述べなさい.
- (11) $y = \arctan x$ $(x \in \mathbb{R})$ のグラフの概形を書きなさい.

- (9) $f: \mathbb{R} \to \mathbb{R}$ を $f(x) := x^2 + 2x + 3$ $(x \in \mathbb{R})$ で 定める. 像 f([-3,4]) を求めなさい.
- $(12) \lim_{x \to \infty} \left(1 + \frac{5}{x} \right)^x を求めなさい.$

(13)
$$\lim_{x \to 1} \frac{x^3 + 3x^2 - x - 3}{2x^3 + 3x^2 - 3x - 2}$$
 を求めなさい.

この下は計算用紙として利用してよい.

(14)
$$\lim_{x\to 0} \frac{\sin(5x)\sin(3x)}{x^2}$$
 を求めなさい.

(15)
$$\lim_{x\to\infty} e^{-x}\cos(x^2)\sin(x)$$
 を求めなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.

 $(x-1)\sin\left(x+\frac{1}{(x-1)^2}\right)\to 0$ $(x\to 1)$ となることを ε - δ 論法で示したい.

(1) $(x-1)\sin\left(x+\frac{1}{(x-1)^2}\right) \to 0$ $(x\to 1)$ の ε - δ 論法を用いた定義を述べなさい. (2) $(x-1)\sin\left(x+\frac{1}{(x-1)^2}\right) \to 0$ $(x\to 1)$ を ε - δ 論法を用いて示しなさい.

問題 3.

 $f: \mathbb{R} \to \mathbb{R}$ を $f(x) := x^3 - x$ $(x \in \mathbb{R})$ で定義する. f が x = 2 で連続となることを ε - δ 論法で示したい.

- (1) 示すべきこと (f が x=2 で連続となることの ε - δ 論法を用いた定義) を述べなさい.
- (2) f が x = 2 で連続となることを ε - δ 論法で示しなさい.

問題 4.

 $f: \mathbb{R} \to \mathbb{R}$ を、 $f(x) := -2\cos x$ $(x \in \mathbb{R})$ で定義する。f が \mathbb{R} 上一様連続であることを示したい。なお、 $\theta \in \mathbb{R}$ に対して $|\sin \theta| \leq |\theta|$ は断りなしに用いてよい。

- (1) 示すべきこと (f が \mathbb{R} 上一様連続であることの定義) を述べなさい.
- (2) f が \mathbb{R} 上一様連続であることを示しなさい.

以下は計算用紙として利用してよい. 採点には一切利用しない.